Influence of Exercise Intensity and Task Difficulty on Image Recognition Decisions of Orienteers: Evidence from fNIRS

HU Fangfang, ZHANG Wen, ZHAO Mingsheng, LIU Yang

Journal of Capital University of Physical Education and Sports ›› 2025, Vol. 37 ›› Issue (1) : 105-115.

PDF(2079 KB)
PDF(2079 KB)
Journal of Capital University of Physical Education and Sports ›› 2025, Vol. 37 ›› Issue (1) : 105-115. DOI: 10.14036/j.cnki.cn11-4513.2025.01.011
Sports Power and Healthy China

Influence of Exercise Intensity and Task Difficulty on Image Recognition Decisions of Orienteers: Evidence from fNIRS

  • HU Fangfang1, ZHANG Wen1, ZHAO Mingsheng2, LIU Yang1
Author information +
History +

Abstract

Objective: To explore the influence of exercise intensities and different task difficulties on the image recognition and decision-making of orienteering athletes with different levels. Method: Adopting 2 (exercise level: expert, novice) ×2 (exercise intensities:resting-state,high intensity) ×2 (exercise difficulties:simple map, complex map). In the three-factor mixed experimental design, near-infrared functional imaging (fNIRS) was used to measure the concentration of Oxy-Hb in prefrontal cortex (PFC) of oriented-athletes during the mapping decision task. Results: 1) The accuracy of image recognition decision decreased significantly with the increase of task difficulty and exercise intensity; the expert group was significantly higher than the novice group, and the resting-state group was significantly higher than the high-intensity group. 2) Oxy-Hb activation in left dorsolateral prefrontal lobe (L-DLPFC) and left ventrolateral prefrontal lobe (L-VLPFC) showed group differences, and the expert group was significantly lower than the novice group. With the exceptionof the left frontal polar region (L-FOA), Oxy-Hb activation in the remaining brain regions was affected by exercise intensity, showing a high intensity significantly lower than the resting state. With the change of task difficulty, Oxy-Hb activation in the left dorsolateral prefrontal lobe (L-DLPFC) was enhanced, which was significantly greater than that in simple maps under complex map conditions. 3)In the resting state of a complex map, the blood oxygen activation level of L-DLPFC is significantly positively correlated with accuracy in the expert group. In the resting state of a simple map, the blood oxygen activation levels of L-DLPFC and R-VLPFC are both significantly positively correlated with accuracy in the novice group.Conclusion: The map-reading decision-making task in orienteering is constrained by the intensity of exercise and the difficulty of the task. Expert athletes have certain cognitive advantages, demonstrating higher task performance and lower blood oxygen activation in relevant brain regions of the prefrontal cortex. Task difficulty results in specific activation of L-DLPFC, and the brain’s blood oxygen activation pattern also changes under high intensity.This research is of great significance for optimizing athletes’training strategies, improving competitive performance, and promoting the development of cognitive decision-making in sports.

Key words

orienteering / image recognition decision / exercise intensity / fNIRS

Cite this article

Download Citations
HU Fangfang, ZHANG Wen, ZHAO Mingsheng, LIU Yang. Influence of Exercise Intensity and Task Difficulty on Image Recognition Decisions of Orienteers: Evidence from fNIRS[J]. Journal of Capital University of Physical Education and Sports. 2025, 37(1): 105-115 https://doi.org/10.14036/j.cnki.cn11-4513.2025.01.011

References

[1] 刘洁. 情绪与视觉空间工作记忆对定向识图认知决策的实验研究[D]. 济南:山东师范大学, 2022:4-6.
[2] 安丰学. 时距知觉对百米定向选手运动决策影响的实验研究[D]. 济南:山东师范大学, 2022: 9-12.
[3] 王晓婷, 迟立忠, 任鹏飞. 心智游移对羽毛球运动决策的影响——言语工作记忆容量的调节作用[J]. 天津体育学院学报, 2022, 37(4):489-496.
[4] 刘美珍. 高水平篮球运动员篮球运动决策过程特征及ERP研究[D]. 长沙:湖南师范大学, 2016:1.
[5] 何忻键. 足球情境训练对9~12 岁少年儿童运动决策能力影响的研究[D]. 北京:北京体育大学, 2022:1.
[6] NICOLAS B, FLORIAN L, JÖRG S, et al. Impact of psychological and physical load on the decision-making of top-class handball referees[J]. International Journal of Performance Analysis in Sport, 2022, 22(3):352-369.
[7] TAKEUCHI T, INOMATA K. Visual search strategies and decision making in baseball batting[J]. Perceptual and Motor Skills, 2009, 108(3): 971-980.
[8] MACQUET A C, ECCLES D W, BARRAUX E. What makes an orienteer an expert? A case study of a highlyelite orienteer’s concerns in the course of competition[J]. Journal of Sports Sciences, 2012, 30(1): 91-99.
[9] KRAWCZYK C D, BOGGAN L A, MCCLELLAND M M, et al. The neural organization of perception in chess experts[J]. Neuroscience Letters, 2011, 499(2):64-69.
[10] MANN D T Y, WILLIAMS A M, WARD P, et al. Perceptual-cognitive expertise in sport: A meta-analysis[J]. Journal of Sport Exercise Psychology, 2007, 29(4): 457-478.
[11] 刘阳, 何劲鹏. 定向运动专项认知技能的心理学诠释与思考[J]. 辽宁体育科技, 2016, 38(5):64-69.
[12] WILLIAMS A, DAVIDS K, BURWITZ L, et al. Perception and action in sport[J]. Journal of Human Movement Studies, 1992, 22:147-204.
[13] 叶浣钰, 迟立忠. 信息量与反应认知方式对羽毛球运动员决策速度、准确性的影响[J]. 北京体育大学学报, 2010, 33(11):117-120.
[14] 赵明生, 刘静如, 鲍圣彬, 等. 任务难度对定向运动练习者路线决策的影响研究——来自 fNIRS 的证据[J]. 山东体育学院学报, 2022, 38(2):110-118.
[15] 易妍, 刘静如, 张言, 等. 不同认知负荷条件下定向运动员心理旋转能力的行为绩效及脑加工特征[J]. 体育学刊, 2022, 29(2):136-144.
[16] 杨威, 顾正秋, 陈美霞, 等. 脑力疲劳对足球运动员灵敏、 下肢爆发力和平衡能力的影响[J]. 体育科学, 2022, 42(5): 68-76.
[17] 张志敏. 篮球运动员运动性疲劳状态下的注意特征和情绪变化研究[D]. 武汉:武汉体育学院, 2017:7.
[18] ROYAL K A, FARROW D, IIGO M, et al. The effects of fatigue on decision making and shooting skill performance in water polo players[J]. Journal of Sports Sciences, 2006, 24(8): 807-815.
[19] COCO M, BUSCEMI A, GUERRERA C S, et al. Effects of a bout of intense exercise on some executive functions[J]. International Journal of Environmental Research and Public Health, 2020, 17(3):898.
[20] 杨倩倩. 力竭性运动对羽毛球运动员认知控制影响的 NIRS 研究[D]. 北京:首都体育学院, 2015: 3-8.
[21] BRISSWALTER J, COLLARDEAU M, ARCELIN R. Effects of acute physical exercise characteristics on cognitive performance[J]. Sports Medicine, 2002, 32(9):555-566.
[22] MAKEPEACE R, CRAIG M. Higher intensity exercise after encoding is more conducive to episodic memory retention than lower intensity exercise: A field study in endurance runners[J]. Plos One, 2024, 19(9): 11-15.
[23] 胡静芸, 蔡明, 商庆慧, 等. 高强度间歇训练改善认知功能及其机制研究进展[J]. 生理学报, 2021, 73(1):126-136.
[24] XUAN B T, THI T N, ANH S H N, et al. Utility of portable functional near-infrared spectroscopy (fNIRS) in patients with bipolar and unipolar disorders: A comparison with healthy controls[J]. Journal of Affective Disorders, 2023, 323:581-591.
[25] KOO B, LEE H, NAM Y, et al. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery[J]. Journal of Neuroscience Methods, 2015, 244: 26-32.
[26] 潘津津, 焦学军, 姜劲, 等. 利用功能性近红外光谱成像方法评估脑力负荷[J]. 光学学报, 2014, 34(11):344-349.
[27] NASEER N, HONG K. Classification of functional near-infrared spectroscopy signals corresponding to the right-and left-wrist motor imagery for development of a brain-computer interface[J]. Neuroscience Letters, 2013, 553:84-89.
[28] 唐思洁, 秦奎元, 李瑛, 等. 定向运动员空间距离感知特征研究:来自行为学和fNIRS 的证据[J]. 中国体育科技, 2023, 59(3):20-27, 36.
[29] 焦学军, 姜劲, 潘津津, 等. 基于fNIRS 技术的脑机接口研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(5):527-535.
[30] 杨蕾. 基于fNIRS 的少儿足球运动员平衡能力与警觉网络相关性研究[D]. 长春:吉林体育学院, 2021: 13-45.
[31] SCHAFER J R, MOORE T. Selective attention from voluntary control of neurons in prefrontal cortex[J]. Science, 2011, 332(6037): 1568-1571.
[32] XIAO W, JIAO Z, SENOL E, et al. Neural circuit control of innate behaviors[J]. Science China (Life Sciences), 2022, 65(3):466-499.
[33] 张斌, 刘莹. 急性有氧运动对认知表现的影响[J]. 心理科学进展, 2019, 27(6):1058-1071.
[34] 蔡治东, 舒展, 王兴, 等. 急性弹力带运动对高龄老年人工作记忆的影响:来自fNIRS 的证据[J]. 中国体育科技, 2023, 59(9):46-53.
[35] 刘阳. 定向运动选手识图的认知加工特征与技能训练研究[D]. 长春:东北师范大学, 2017: 32.
[36] SKAU S, HELENIU O, SUNDBERG K, et al. Proactive cognitive control, mathematical cognition and functional activity in the frontal and parietal cortex in primary school children: An fNIRS study[J]. Trends in Neuroscience and Education, 2022, 28: 1-24.
[37] 文世林, 王华. 有氧体能对执行功能的影响:一项fNIRS 研究[J]. 首都体育学院学报, 2016, 28(2):161-166.
[38] 王钧. 基于主观感觉疲劳量表和心率变异性相结合的运动性疲劳监测[D]. 武汉:武汉体育学院, 2015: 17.
[39] 王正珍. ACSM 运动测试与运动处方指南(第十版)[M]. 北京:北京体育大学出版社, 2019:38.
[40] 刘阳, 何劲鹏. 定向运动员识图过程中视觉搜索特征研究[J]. 中国体育科技, 2018, 54(4):120-128, 145.
[41] 王飞. 空间认知能力对定向越野识图影响的研究[D]. 济南:山东师范大学, 2015: 30.
[42] 孙瑞. 体育与非体育专业大学生手部图片心理旋转任务的比较研究[D]. 武汉:武汉体育学院, 2019: 7-8.
[43] 王洪彪. 运动决策情境中认知加工理论模型的初步构建[J]. 沈阳体育学院学报, 2013, 32(3):28-32.
[44] HARPER F W K, SCHMIDT J E, BEACHAM A O, et al. The role of social cognitive processing theory and optimism in positive psychosocial and physical behavior change after cancer diagnosis and treatment[J]. Psycho-oncology, 2007, 16(1): 79-91.
[45] MCMORRIS T, KEEN P. Effect of exercise on simple reaction times of recreational athletes[J]. Percept Mot Skills, 1994, 78(1):123-130.
[46] CHMURA J, JUSIAK R. Changes in psychomotor performance of soccer players subjected to an exercise test[J]. Biology of Sport, 1994, 11:197-203.
[47] DAVRANCHE K, AUDIFFREN M. Facilitating effects of exercise on information processing[J]. Journal of Sports Sciences, 2004, 22(5): 419-428.
[48] 张志敏. 篮球运动员运动性疲劳状态下的注意特征和情绪变化研究[D]. 武汉:武汉体育学院, 2016:7.
[49] 张晓念. 初学乒乓球儿童的运动决策能力研究[J]. 当代体育科技, 2020, 10(10):74, 76.
[50] HAIER R J, SIEGEL J R B V, MACLACHLAN A, et al. Regional glucose metabolic changes after learning a complex visuospa-tial/motor task:A positron emission tomographic study[J]. Brain Research, 1992, 570(1/2): 134-143.
[51] 刘宁. 围棋专家的认知优势表现及其脑基础[D]. 上海: 华东师范大学, 2019:2-3.
[52] 彭艳芳, 任杰. 精准类项目运动表现与大脑EEG 特征潜在关系研究[J]. 天津体育学院学报, 2021, 36(3): 332-338.
[53] MORIGUCHI Y, HIRAKI K. Prefrontal cortex and executive function in young children: A review of NIRS studies[J]. Human Neuroscience, 2013, 7: 1-9.
[54] OCHSNER K N, SILVERS J A, BUHLE J T. Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion[J]. Annals of the New York Academy of Sciences, 2012, 1251(1): 1-24.
[55] WILSON C R E, GAFFAN D, MITCHELL A S, et al. Neurotoxic lesions of ventrolateral prefrontal cortex impair object in-place scene memory[J]. European Journal of Neuroscience, 2007, 25(8): 2514-2522.
[56] CORBALLIS M C. Mental rotation and the right hemisphere[J]. Brain & Language, 1997, 57(1):100-121.
[57] DIETRICH A, AUDIFFREN M. The reticular-activating hypofrontality (RAH) model of acute exercise[J]. Neuroscience and Biobehavioral Reviews, 2011, 35(6):1305-1325.
[58] BOGGIO P S, ZAGHI S, VILLANI A B, et al. Modulation of risk-takingin marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC)[J]. Drug and Alcohol Dependence, 2010, 112(3): 220-225. [59] KOECHLIN E, HYAFIL A. Anterior prefrontal function and the limits of human decision-making[J]. Science, 2007, 318(5850):594-598.
[60] MILLER E K. The prefrontal cortex and cognitive control[J]. Nature Reviews Neuroscience, 2000, 1(1):59-65.
[61] 杨勇涛, 张新伟, 冉静, 等. 运动强度和能量消耗对认知表现的影响[J]. 中国运动医学杂志, 2011, 30(1):110-115.
[62] 祝瑜瑛. 基于脑电信号的运动性疲劳研究[D]. 杭州:杭州电子科技大学, 2019:13-15.
[63] ROMAIN M, PHILIP W, HIROSHI H, et al. Central fatigue: The serotonin hypothesis and beyond[J]. Sports Medicine, 2006, 36(10):881-909.
[64] MCNEIL C J, MARTIN P G, GANDEVIA S C, et al. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue[J]. Journal of Physiology, 2010, 587(23): 5601-5612.
[65] CIAN C, BARRAUD P A, MELIN B, et al. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration[J]. International Journal of Psychophysiology, 2001, 42(3): 243-251.
[66] DAVIS J M, BAILEY S P. Possible mechanisms of central nervous system fatigue during exercise[J]. Medicine and Science in Sports and Exercise, 1997, 29(1): 45-57.
[67] 朱国毅. 材料类型和情绪信息对病理性网络使用者工作记忆的影响:一项近红外研究[D]. 武汉:华中师范大学, 2021: 67-71.
[68] FISHBURN F A, NORR M E, MEDVEDEV A V, et al. Sensitivity of fNIRS to cognitive state and load[J]. Frontiers in Human Neuroscience, 2014, 8(76): 1-11.
[69] 张文, 宋杨, 刘阳. 不同认知任务下定向运动员脑加工特征研究——来自 fNIRS 的证据[J]. 首都体育学院学报, 2023, 35(2):180-186.
PDF(2079 KB)

Accesses

Citation

Detail

Sections
Recommended

/